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Abstract. We introduce a model of three parallel-coupled nonlinear waveguiding cores equipped with
Bragg gratings (BGs), which form an equilateral triangle. The most promising way to create multi-core
BG configuration is to use inverted gratings, written on internal surfaces of relatively broad holes embedded
in a photonic-crystal-fiber matrix. The objective of the work is to investigate solitons and their stability
in this system. New results are also obtained for the earlier investigated dual-core system. Families of
symmetric and antisymmetric solutions are found analytically, extending beyond the spectral gap in both
the dual- and tri-core systems. Moreover, these families persist in the case (strong coupling between the
cores) when there is no gap in the system’s linear spectrum. Three different types of asymmetric solitons
are found (by means of the variational approach and numerical methods) in the tri-core system. They exist
only inside the spectral gap, but asymmetric solitons with nonvanishing tails are found outside the gap
as well. Stability of the solitons is explored by direct simulations, and, for symmetric solitons, in a more
rigorous way too, by computation of eigenvalues for small perturbations. The symmetric solitons are stable
up to points at which two types of asymmetric solitons bifurcate from them. Beyond the bifurcation, one
type of the asymmetric solitons is stable, and the other is not. Then, they swap their stability. Asymmetric
solitons of the third type are always unstable. When the symmetric solitons are unstable, their instability
is oscillatory, and, in most cases, it transforms them into stable breathers. In both the dual- and tri-core
systems, the stability region of the symmetric solitons extends far beyond the gap, persisting in the case
when the system has no gap at all. The whole stability region of antisymmetric solitons (a new type of
solutions in the tri-core system) is located outside the gap. Thus, solitons in multi-core BGs can be observed
experimentally in a much broader frequency band than in the single-core one, and in a wider parameter
range than it could be expected. Asymmetric delocalized solitons, found outside the spectral gap, can be
stable too.

PACS. 42.81.Dp Propagation, scattering, and losses; solitons – 42.65.Tg Optical solitons; nonlinear guided
waves – 05.45.Yv Solitons

1 Introduction

Bragg gratings (BGs) are optical structures in which the
refractive index is modulated with the spatial period
equal half the wavelength of light propagating in it. The
resonant modulation gives rise to mutual conversion of
counter-propagating waves via the Bragg reflection. The
BGs are widely used as optical filters, sensors and multi-
plexers [1]. Current applications exploit linear properties
of the grating, namely, the presence of a gap in its spec-
trum, which is induced by the linear conversion of the
counter-propagating waves. On the other hand, combina-
tion of this linear feature with intrinsic nonlinearity of ma-
terials in which BG can be written has attracted a great
deal of attention in fundamental and applied research of
the light transmission in BG-equipped structures. Nonlin-
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earity gives rise to self-phase modulation (SPM) and cross-
phase modulation (XPM) terms in the coupled-mode de-
scription of BGs. In particular, in the case when the BG
is written on an optical fiber, the corresponding model is
based on well-known equations [2–4],

iUx + iUt + V +
(

1
2
|U |2 + |V |2

)
U = 0,

−iVx + iVt + U +
(

1
2
|V |2 + |U |2

)
V = 0, (1.1)

where U and V are amplitudes of the forward- and
backward-propagating waves, x is the coordinate along
the fiber, the Bragg-reflection and XPM coefficients being
normalized to be 1.

Analysis of stationary properties of this model led
to prediction of optical bistability in nonlinear periodic
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structures in 1979 [2]. Later, a lot of work has been done
on the theoretical [3–5] and experimental [6] study of gap
solitons in this system. Gap solitons owe their existence
to the balance between the SPM and XPM nonlinearity
and BG-induced linear dispersion. The analytical form of
the solitons is [3,4]

U (x, t;ψ, c) = A sech (ξ − iψ/2) exp(iθ),

V (x, t;ψ, c) = B sech (ξ + iψ/2) exp(iθ),

(A,B) = ±
(

1 ± c

1 ∓ c

)1/4
√

2 (1 − c2)
3 − c2

sinψ,

ξ =
x− ct√
1 − c2

sinψ,

θ =
cx− t√
1 − c2

cosψ − 4c
3 − c2

tan−1 (|cot (ψ/2)| coth (ξ)) .

(1.2)

Solutions belonging to this family depend on the param-
eters ψ and c. The former one determines the amplitude,
width, and central frequency of the soliton, and takes val-
ues from the interval 0 < ψ < π, while the velocity c is
limited to −1 < c < +1.

Stability of the solutions (1.2) was first considered by
means of a variational approximation in reference [7]. It
was concluded that a part of the solitary-wave family (1.2)
is unstable. The confirmation of the existence of an insta-
bility region in the (ω, c) plane of the solutions (1.2) was
later provided by means of rigorous numerical methods in
the works [8–10] (see also Ref. [11]).

The study of gap solitons was then expanded to com-
posite structures involving BGs. The simplest version of
such a structure is a set of two linearly coupled parallel
fibers carrying BGs. This system was investigated in refer-
ence [12]. It was shown that for some critical value of the
linear-coupling coefficient, which depends on the energy
of the soliton, obvious symmetric solitons lose their sta-
bility, bifurcating into stable asymmetric ones. Stability
analysis of both the symmetric and asymmetric soliton so-
lutions was performed in reference [12] by means of direct
simulations, and it was concluded that, when asymmetric
solitons exist, they are always stable, while the symmetric
ones are always unstable in the same case; on the other
hand, when asymmetric solitons do not exist, the symmet-
ric ones are always stable.

In this work, we investigate a triangular configura-
tion of three linearly coupled identical BGs, which is the
most symmetric possible composite structure consisting
of waveguide gratings. In reference [13], solitons in a tri-
angular configuration of ordinary nonlinear optical fibers
were investigated, and solitons in a planar — rather than
triangular — tri-core configuration were studied in detail
in reference [14]. A system of three waves in the spatial
domain, linearly coupled by a triple BG written on the sur-
face of a planar nonlinear planar waveguide, was studied in
reference [15]. This three-wave system, which is formally

tantamount to a model with “1.5” cores in the temporal
domain, gives rise to a rich family of solitons, which con-
tains both regular gap solitons and stable “cuspons” and
“peakons”.

The consideration of the triangular three-core config-
uration of BGs is relevant for various reasons. First of
all, this configuration makes it possible to perform direct
switch of optical signals between any two cores. Gener-
ally, the study of nonlinear dynamical states in equilateral
triangular configurations in various systems is a topic of
fundamental interest for obvious symmetry reasons, see,
e.g., references [13,16]. In the context of the BG systems,
tri-core configurations offer new possibilities to enhance
functionality of the grating-based devices, which is an is-
sue of considerable current interest, see a review [17]. We
demonstrate that the transition from two to three cores
drastically changes both the linear spectrum and soliton
content of the system; for instance, instead of the sin-
gle family of asymmetric solitons existing in the dual-core
system, the tri-core one gives rise to three asymmetric
families, two of which may be stable. Another essentially
new feature of the tri-core system is the existence of a
family of nontrivial antisymmetric solitons (in the dual-
core model, symmetric and antisymmetric soliton families
are tantamount to each other); the stability region of the
antisymmetric solitons takes an unusual form, see below.

Besides that, we also report new results for dynamical
states in dual-core nonlinear gratings. An essential result
is that the existence and stability of symmetric solitons, in
both the dual- and tri-core systems, continuously extend
far across the borders of the spectral gap. This finding is of
direct relevance to the experiment, as it suggests that the
creation of stable solitons is possible in a frequency band
and in a parameter region which are much broader than
it could be expected a priori. Moreover, a broad stability
region for the symmetric solitons is found in the case when
the gap does not exist at all, hence the system cannot
support ordinary gap solitons. In addition to that, it is
found that the whole stability region of the antisymmetric
solitons in the tri-core system is located outside the gap
(and it also persists when the gap does not exist anymore).

The stability region of the symmetric solitons is limited
to relatively small values of their amplitude. However, in
most cases when they are unstable, the instability, which
has an oscillatory character, does not destroy the solitons,
but rather quickly transforms them into robust (numeri-
cally stable) breathers. The latter result is physically rel-
evant too, as it suggests a possibility to experimentally
look for such breathers in dual- and tri-core nonlinear
gratings. Besides that, we demonstrate that stable asym-
metric slightly delocalized solitons (the ones with nonva-
nishing tails) can also be found outside the gap, which
makes the variety of stable dynamical states amenable to
the experimental observation still broader. It is relevant
to stress that all these stable states (solitons outside the
gap, breathers, etc.) do not exist in the ordinary single-
core gratings.

As concerns their actual realization, dual- and multi-
core fiber gratings were a theoretical concept until the
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fabrication of a dual-core waveguide, with the grating
symmetrically written on both cores, was reported in a
very recent experimental work [18] (see Fig. 6 in it). In
that work, the dual-core fiber grating was used as a basis
for an add-drop telecommunications filter. The same tech-
nology should make the fabrication of the tri-core system
quite feasible.

However, the most promising host medium in which
dual- and tri-core gratings may be implemented is a pho-
tonic crystal fiber (PCF). Indeed, a guided mode can
be easily localized inside the PCF in a layer of the
width ∼1 µm around a central hole of a relatively large di-
ameter (∼2 µm), see a review [19]. A natural way to apply
the BG to this mode is to write the grating on the internal
surface of the hole. Then, exactly the same model which
describes a double- or tri-core fiber grating is also valid
for the PCF matrix hosting a system of two broad holes
or three holes which form an equilateral triangle, which is
quite possible technologically. Note that fabrication and
application of a PCF hosting two far separated waveguid-
ing cores was reported very recently in reference [20] (see
Fig. 1 in it); the same paper emphasizes that fabrication of
various multi-core patterns in the PCF matrix is much eas-
ier than making similar structures composed of ordinary
fibers. It is relevant to stress that, although a combination
of a PCF with BG was mentioned in some recent papers
[21], the possibility to use inverted BGs, written on the
internal surfaces of holes, and compose multi-core gratings
of this type, were not yet considered, to our knowledge.
Actually, applications of the inverted gratings in the PCF
matrix may be much broader than just the creation of
dual- and tri-core gratings.

In the context of making gap solitons in fiber grat-
ings, the strength of the nonlinearity is a crucial issue, as
the corresponding nonlinearity length must be no longer
than ∼1 cm [6]; in ordinary fibers, this makes it neces-
sary to launch signals whose peak power is comparable to
the optical-breakdown threshold. In the PCF setting, this
problem is much easier to solve, as this medium may pro-
vide for an effective nonlinearity coefficient for the guided
mode of up to 100 W−1km−1, i.e., 50 times as strong as
in the ordinary fibers [22]. This is another advantage of
using the PCF medium to create systems supporting gap
solitons.

To conclude the introduction, it may be relevant to
mention that another way to introduce a multi-component
system in BGs is to use two polarizations of light (rather
than multi-core structures), which was demonstrated ex-
perimentally in the temporal domain [23], and theoreti-
cally in the spatial one [24].

The paper is organized as follows. The formulation of
the model is presented in Section 2. In Section 3, lin-
ear properties of the structure are considered. A gap in
the system’s spectrum is found, which outlines the region
where gap solitons are expected to exist. Section 4 presents
families of exact symmetric and antisymmetric soliton so-
lutions (as it was mentioned above, these soliton families
extend across the gap’s borders, and persist in the case
when the system’s spectrum has no gap at all). Section 5

investigates general asymmetric solitons. Three different
species of them (on the contrary to the single family of
asymmetric solitons in the dual-core system [12]) are pre-
dicted by means of the variational approximation, and are
then found in a numerical form. Section 6 deals with sta-
bility of the solitons. The stability of asymmetric solutions
is tested by direct numerical simulations. For the above-
mentioned exact symmetric solutions, rigorous stability
analysis is performed within the framework of linearized
equations for small perturbations. For the purpose of this
consideration, the problem is formulated for M symmet-
rically coupled Bragg gratings, so that it comprises the
cases of both two (M = 2) and three (M = 3) linearly
coupled cores. Conclusions are presented in Section 7.

2 The model

We start by considering M symmetrically coupled non-
linear gratings, where M will take values 2 and 3. The
electromagnetic field in the cores is assumed in the form

Em (z, τ) = Em+ (z, τ) exp (ik0z − iω0τ)

+ Em− (z, τ) exp (−ik0z − iω0τ) + c.c., (2.1)

where the subscript m = 1, . . . , M is the number of the
corresponding core, z is the propagation distance, τ is
time, ω0 and k0 are the frequency and wave number of
the carrier wave, and c.c. stands for the complex-conjugate
expression.

Following the known technique of the coupled-mode
theory, we derive evolution equations governing the slow
evolution of the envelope fields in the cores:

i
∂Em+

∂z
+ i

∂Em+

∂τ
+ κEm−

+γ
(
|Em+|2 + 2 |Em−|2

)
Em+ + C

∑
k �=m

Ek+ = 0,

−i∂Em−
∂z

+ i
∂Em−
∂τ

+ κEm+

+γ
(
|Em−|2 + 2 |Em+|2

)
Em− + C

∑
k �=m

Ek− = 0,

(2.2)

where κ and C are the Bragg reflectivity and the inter-core
coupling constant, respectively, and the group velocity of
light is set equal to 1 (the derivation is a straightforward
combination of those for the single-core BG [5] and dual-
or tri-core nonlinear couplers, see, e.g., Ref. [13]).

Applying the following normalizations to equa-
tions (2.2),

Em+ =
√

κ

2γ
Um,

Em− =
√

κ

2γ
Vm,

z =
x

κ
,

τ =
1
κ
t,

(2.3)
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we cast them in a more convenient form:

iUmx + iUmt + Vm +
(

1
2
|Um|2 + |Vm|2

)
Um

+λ
∑
k �=m

Uk = 0,

−iVmx + iVmt + Um +
(

1
2
|Vm|2 + |Um|2

)
Vm

+λ
∑
k �=m

Vk = 0,

(2.4)

where the single remaining parameter is λ = C/κ. An es-
sential difference of the tri-core model from its dual-core
counterpart is the importance of the coupling-constant’s
sign: in the case of two coupled equations, one may al-
ways redefine λ so that it is positive, while, in the case of
three coupled equations, there is a real difference between
positive and negative values of the coupling constant.

Throughout this paper, we consider only quiescent
(zero-velocity) solitons, that can be looked for as

Um = um (x) exp (−iωt) ,

Vm = vm (x) exp (−iωt) . (2.5)

Substituting these expressions into equations (2.4) leads
to stationary equations,

ωum + iu′m + vm +
(

1
2
|um|2 + |vm|2

)
um

+ λ
∑
k �=m

uk = 0,

ωvm − iv′m + um +
(

1
2
|vm|2 + |um|2

)
vm

+ λ
∑
k �=m

vk = 0,

(2.6)

where the prime stands for d/dx. Forward and backward
propagating components of the quiescent solitons obey the
symmetry constraint, u = −v*. Then, equation (2.6) for
the mth core becomes

ωum + iu′m − u∗m +
3
2
|um|2 um + λ

∑
k �=m

uk = 0. (2.7)

Below, the stationary equations (2.7) and evolution equa-
tions (2.4) for two or three cores will be used to construct
soliton solutions and investigate their stability. The main
subject will be the new case of three cores, although the
two-core model will be revisited two, in order to obtain
some stability results in a more accurate form than it was
done in reference [12].

Thus, for the tri-core configuration, the explicit
forms of the propagation and stationary equations are,

respectively,

iU1x + iU1t + V1 +
(

1
2
|U1|2 + |V1|2

)
U1

+ λU2 + λU3 = 0,

− iV1x + iV1t + U1 +
(

1
2
|V1|2 + |U1|2

)
V1

+ λV2 + λV3 = 0,

iU2x + iU2t + V2 +
(

1
2
|U2|2 + |V2|2

)
U2

+ λU1 + λU3 = 0,

− iV2x + iV2t + U2 +
(

1
2
|V2|2 + |U2|2

)
V2

+ λV1 + λV3 = 0,

iU3x + iU3t + V3 +
(

1
2
|U3|2 + |V3|2

)
U3

+ λU2 + λU1 = 0,

− iV3x + iV3t + U3 +
(

1
2
|V3|2 + |U3|2

)
V3

+ λV2 + λV1 = 0, (2.8)

and

ωu1 + iu′1 − u∗1 +
3
2
|u1|2 u1 + λu2 + λu3 = 0,

ωu2 + iu′2 − u∗2 +
3
2
|u2|2 u2 + λu1 + λu3 = 0,

ωu3 + iu′3 − u∗3 +
3
2
|u3|2 u3 + λu1 + λu2 = 0. (2.9)

3 The dispersion relation and spectral gap

Investigation of the linear spectrum can provide a clue
to search for an existence range of gap solitons. Omitting
nonlinear terms in equations (2.8) and looking for a solu-
tion in the form

Un = un exp (ikx− iωt) ,

Vn = vn exp (ikx− iωt) , (3.1)

we find the following branches of the dispersion relation:

ω1,2 = −(M − 1)λ±
√

1 + k2,

ω3,4 = ω5,6 = λ±
√

1 + k2, (3.2)

which are shown in Figure 1. The dispersion dependences
are written in the form which applies to both the dual-
core (M = 2) and tri-core (M = 3) systems; in the former
case, the branches ω5,6 are absent.

Gap solitons are expected to exist in the spectral gaps,
where no linear propagation is possible. According to
equations (3.2), for the tri-core system the gap is

− (1 − λ) < ω < 1 − 2λ (3.3)
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(a) (b)

Fig. 1. Dispersion curves for the tri-
core system. (a) Zero or negative val-
ues of the inter-core coupling constant,
λ = 0 (dotted), λ = −0.5 (dashed),
and λ = −2/3 (solid). (b) Zero or pos-
itive values of the coupling constant:
λ = 0 (dotted), λ = 0.5 (dashed), and
λ = 2/3 (solid).

for positive λ, and

− (1 + 2λ) < ω < 1 + λ (3.4)

for negative λ, while for the dual-core configuration the
gap is |ω| < 1 − |λ|. The gap is widest when λ = 0. With
the increase of |λ|, the gap narrows, both intervals (3.3)
and (3.4) shrinking to nil at |λ| = 2/3, similar to the dual-
core’s gap, which closes down at |λ| = 1.

In the case of two gratings, the gap is symmetric rela-
tive to the zero-detuning frequency, ω = 0. On the other
hand, in the tri-core system, this symmetry is absent, and
the frequency ω = 0 is completely pushed out from the
spectral gap for |λ| > 1/2, while the gap still exists in the
region 1/2 < |λ| < 2/3. The gap region in the parametric
space (ω, λ) of the tri-core system is shown in Figure 2.

The expressions (3.3) and (3.4) define the genuine
gap, i.e., an overlap between subgaps of all the dispersion
branches. Regular gap solitons are expected to be found
inside this gap. However, it is known that, in a system
with at least two different branches of the dispersion rela-
tion, the so-called embedded solitons may exist inside one
of the subgaps, being embedded in the continuous spec-
trum belonging to the other dispersion branch [25,26]. It
will be shown below that the present system supports soli-
tons both inside and outside the genuine gap. The embed-
ded solitons are usually semi-stable (i.e., stable in the lin-
ear approximation, but nonlinearly unstable), and in some
cases they turn out to be, in practical terms, completely
stable objects [26].

4 Exact solutions

Some solitary-wave solutions of equations (2.6) can be
found in an exact analytical form. With respect to re-
lations between the wave fields in different cores, these
solutions may have a symmetric or antisymmetric form.

4.1 Symmetric solutions

Symmetric solutions have identical fields U and V in all
the cores. Looking for them in the form

U (x, t;ω) = u (x;ω) exp (−iωt) ,
V (x, t;ω) = v (x;ω) exp (−iωt) , (4.1)

it is straightforward to see that they can be expressed as

u (x;ω, λ) = uB (x;ω + (M − 1)λ) ,

v (x;ω, λ) = vB (x;ω + (M − 1)λ) , (4.2)

(recall M is the number of cores, which takes values 2
or 3), where uB(x;w) and vB(x;w) are the standard sta-
tionary solutions (1.2) for the gap solitons with c = 0 and
the frequency cosψ = ω+(M−1)λ in the single-core non-
linear BG. These solutions exist in the frequency interval
−1 < cosψ < +1, which is the corresponding spectral
gap, hence the exact symmetric solutions can be found in
the interval

−1 < ω + (M − 1)λ < 1, (4.3)
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Fig. 2. The region in the parametric plane
(λ, ω) of the system of three linearly cou-
pled Bragg gratings where the spectral gap
exists. Two stripes are defined by equa-
tions (3.3) and (3.4). The genuine gap is
the parallelogram formed by intersection of
the stripes.

i.e., precisely in the subgap of the dispersion branches
ω1,2(k) defined by equations (3.2). In the case of the
tri-core system, M = 3, the region (4.3) is the interior
of the negative-slope stripe in Figure 2. Thus, the exact
symmetric-soliton solutions exist not only inside the gap
proper, but also (as embedded solitons) in the whole sub-
gap (4.3).

It is also important to notice that the family of the
symmetric solitons is present even in the cases of |λ| > 1
and |λ| > 2/3, for M = 2 and M = 3, respectively, when
the genuine gap does not exist at all, hence the system sup-
ports no regular gap solitons, while the continuous family
of the embedded symmetric solitons is available.

4.2 Antisymmetric solutions

The existence of the antisymmetric solution in the dual-
core model is obvious [12]. In fact, they are tantamount to
the symmetric solitons with λ replaced by −λ. In the tri-
core system, this symmetry is absent, and an antisymmet-
ric soliton is an independent solution. It has components
with opposite signs in two cores, and zero in the third
one: for instance, (U, V )1 = 0, and (U, V )2 = −(U, V )3 ≡
(U, V ). The existence of this solution is possible as the lin-
ear terms generated by the first and second fields in the
equation for the third core exactly cancel each other.

In the non-empty cores, the stationary field for the
antisymmetric solution takes the form

u(x;ω, λ) = uB(x;ω − λ), v(x;ω, λ) = vB(x;ω − λ),
(4.4)

where uB(x;ω) and vB(x;ω) are the standard single-core
solutions (1.2) with c = 0 and frequency cosψ = ω−λ, cf.

equations (4.2). Accordingly, the antisymmetric solutions
exist in the interval

−1 < ω − λ < 1, (4.5)

cf. equation (4.3). This region is exactly the subgap of the
dispersion branches ω3,4 and ω5,6 from equations (3.2),
and it fills the stripe with the positive slope in Figure 2.
Thus, as well as the symmetric solitons, the antisymmet-
ric ones exist not only inside the gap proper, but also in
the whole subgap (the one transversal to that which sup-
ports the symmetric solitons). Beyond the gap’s borders,
the antisymmetric solitons are embedded ones. Lastly, we
notice that, as well as their symmetric counterparts, the
antisymmetric solitons keep to exist (as embedded soli-
tons) even in the case when the true gap is absent in the
system.

5 Asymmetric solitons: the variational
approximation and numerical results

In order to classify more general soliton solutions, it is
natural to start the analysis with the case of a small inter-
core coupling constant λ (similar to how it was done for
the dual-core model in Ref. [12]). In the limit of λ → 0,
equations for different cores decouple, and the following
solutions can be identified [recall (u,v)B stands for the
usual single-core soliton with the zero velocity]:

– symmetric, with (u, v)1 = (u, v)2 = (u, v)3 = (u, v)B;
– antisymmetric, (u, v)1 =−(u, v)2 =(u, v)B, (u, v)3 =0;
– asymmetric solution, type I: (u, v)1 = (u, v)B ,

(u, v)2 = (u, v)3 = 0;
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Fig. 3. Amplitudes of differ-
ent types of solitons, found
by means of the variational
method, vs. the inter-core cou-
pling λ in the case of ω = 0. Note
that each symbol forms two dif-
ferent curves, corresponding to
amplitudes of two different com-
ponents of the soliton.

– asymmetric solution, type II: (u, v)1 = (u, v)B,
(u, v)2 = (u, v)3 = −(u, v)B;

– asymmetric solution, type III: (u, v)2 = (u, v)3 =
(u, v)B , (u, v)1 = 0.

It is relevant to mention that a similar approach, in which
different types of solutions are identified on the basis of
obvious forms available in the decoupled limit, is very
efficient in classification of various soliton-like states in
models of dynamical lattices, see, e.g., reference [27] and
references therein. Another essential remark is that, in
the dual-core system, the same limiting case, λ → 0,
gives rise to a single type of asymmetric solutions, with
(u, v)1 = (u, v)B, (u, v)2 = 0.

For the first two species (symmetric and antisymmetric
solitons), exact solutions valid for finite λ were given in the
previous section. To find the stationary solutions of all the
types, we first applied the variational approximation (VA)
to equations (2.9); then, the solutions were sought for in
a direct numerical form.

First, we present analytical results provided by VA.
The tri-core stationary equations (2.9) can be derived from
the Lagrangian density,

L = QB (u1) +QB (u2) +QB (u3)
+ 2λRe {u1u

∗
2 + u1u

∗
3 + u2u

∗
3} (5.1)

where

QB(u) ≡ ω |u|2 +
3
4
|u|4− 1

2
u2− 1

2
(u∗)2− Im (u′u∗) (5.2)

is the Lagrangian density for the single-core model. Next,
following reference [12], where VA was applied to soliton

solutions of the dual-core model and yielded quite accurate
results, we adopt the following ansatz,

un = An sech (µx) + iBn sinh (µx) sech2 (µx) , (5.3)

where the same width µ−1 is assumed for all the three
components, while the amplitudes An and Bn may be dif-
ferent for different n. The effective Lagrangian, which is
obtained by the substitution of the ansatz (5.4) in the den-
sity (5.1) and integration, is displayed in Appendix. Vary-
ing the effective Lagrangian (A.1) with respect to An, Bn,
and µ yields a system of algebraic equations (A.2), which
are also written in Appendix.

Equations (A.2) were solved by means of the Newton-
Raphson method. Figures 3, 4 and 5 show amplitudes An

of two different components for solitons of all the types
defined above, as found from the VA at ω = 0, ω = 0.5,
and ω = 0.8, respectively. Only two amplitudes are shown
because the third one is always equal to one of them, and
the symmetric solution is represented by a single curve, as
it has a single amplitude.

As is seen from Figures 3–5, branches of asymmetric
solutions of the types I and III are generated from the
symmetric-soliton branch by pitchfork bifurcations. Fur-
ther, the following general conclusions can be drawn from
the diagrams:

– symmetric solutions bifurcate twice: at a larger value
of λ into type-I asymmetric solutions, and at a slightly
smaller λ into type-III solitons. The two bifurcation
points tend to come closer as ω become larger;

– the region of existence of the asymmetric solitons of
the types I and III becomes smaller as ω increases;



290 The European Physical Journal D

Fig. 4. The same as in Figure 3, but for ω = 0.5.

Fig. 5. The same as in Figure 3, but for ω = 0.8.
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Fig. 6. Typical examples of asymmetric
solitons, as found by means of the varia-
tional approximation (dashed) and in the
numerical form (solid) for ω = 0 and λ =
0.2: (a) type I; (b) type III.

– the type-III solution exists only inside the genuine
spectral gap (recall it was defined above as the overlap
between the two subgaps);

– the type-I solution also exists inside the genuine gap
only, unless ω = 0 (probably, at small finite values of ω
this solution may exist outside the genuine gap);

– the type-II solution exists both inside and outside the
genuine gap.

Next, the relaxation method, based on the so-called sinc-
collocation technique, was employed to obtain numerically
exact stationary soliton solutions, using the prediction
produced by the VA as an initial guess. Inside the gen-
uine gap, the variational results match their numerical
counterparts quite well, which is illustrated by Figure 6.

On the other hand, direct attempts to generate asym-
metric solitons outside of the genuine gap in the numerical
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Fig. 7. A delocalized asymmetric soliton
of type I, as found by means of the varia-
tional approximation (dashed) and by the
numerical method (solid) for ω = 0 and
λ = −0.75.

form, starting with the VA-predicted initial guess (in those
cases when the VA does predict asymmetric solitons out-
side the gap), have failed. Instead, the numerical algorithm
produces delocalized solitons (alias “quasi-solitons”) with
small nonvanishing oscillatory tails, which is a direct con-
sequence of the fact that the solution does not belong
to the genuine gap. A definite conclusion verified by the
numerical method is that regular asymmetric solitons ex-
ist only inside the spectral gap, while all the asymmetric
solitons found outside the gap are delocalized ones. In the
latter case, the central core of the delocalized solitons is
found to be quite close to the corresponding VA-predicted
shape, in accordance with the principle that VA, even if it
misses the existence of the tail, is able to correctly describe
the soliton’s core [28].

Typical examples of the delocalized soliton, found out-
side the gap, are displayed in Figure 7. An unexpected
feature found from the numerical results is that the ampli-
tude of the nonvanishing tail increases as one approaches
the gap’s border along the branches of the type-I or type-II
delocalized solitons. Hitting the gap edge, the delocalized
solitons disappear, while a regular (truly localized) asym-
metric solitons of the types I and II show up.

6 Stability

After having found basic types of stationary soliton solu-
tions in the model, it is necessary to analyze their stability.
Direct simulations of the evolution equations is the most
commonly used method for determining the stability of
solitons, which actually corresponds to the way the physi-
cal experiment is run. However, more rigorous information
on the stability is furnished by numerical computation of

the corresponding eigenvalues within the framework of lin-
earized equations for small perturbations (for the single-
core Bragg-grating model, this was done in Refs. [8–10]).
In particular, it may happen that direct simulations may
sometimes manifest a weak instability which is an arti-
fact of the numerical scheme, while the soliton is stable
(in some cases considered in Ref. [12], the weak instabil-
ity of symmetric solitons in the dual-core BG model was
actually the artifact).

Below, we display results for the stability of solitons in
the present models (both dual-core and tri-core ones), ob-
tained by means of both direct simulations and eigenvalue
computation. Direct simulations were used to investigate
the stability of asymmetric solitons (for which numerical
computation of the eigenvalues is a technically difficult
problem), and to delineate a stability region of symmetric
solitons. Then, we applied the more rigorous eigenvalue-
based procedure to the symmetric solutions.

6.1 Direct simulations

Systematic direct simulations of the soliton stability have
resulted in the following conclusions for the symmetric,
antisymmetric, and asymmetric solitons in the tri-core
system.
– Symmetric solitons are stable before the bifurcations

occur. After passing (in the direction of decreasing λ,
see Figs. 3–5) the bifurcation points at which the
type-I and type-III asymmetric solitons are born, the
symmetric-soliton branch becomes unstable. Since two
bifurcation points may be quite close, it is sometimes
difficult to determine exactly where the symmetric soli-
ton loses its stability. On the other hand, stable (at
least, in the linear approximation) symmetric solitons
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Fig. 8. A typical example of the stable antisymmetric soliton
(with one empty core), found outside the spectral gap. Three
components of the soliton are shown in one panel for the sake
of compactness. Small intrinsic oscillations of the soliton ob-
served in the figure are due to initial perturbations added to
the soliton.

are also found outside the gap, see Figure 10 below. The
implication of the latter result for the experiment is
the great enlargement of the parameter region (in par-
ticular, of the corresponding frequency band) in which
stable solitons can be sought for. Moreover, stable sym-
metric solitons are found in the case of |λ| > 2/3, when
the gap does not exist at all in the tri-core system.

– The antisymmetric solution with one empty core is al-
ways unstable inside the spectral gap, and it is unsta-
ble too when it exists outside the gap for positive λ,
see Figures 4 and 5. However, at relatively large neg-
ative values of the coupling constant λ, the soliton of
this type is stable (this situation occurs, e.g., in the
case shown in Fig. 3; recall that, unlike the dual-core
system, in the tri-core one the sign of λ is a nontriv-
ial ingredient). A purport of this finding is that sta-
ble antisymmetric solitons (as well as symmetric ones,
see above) are possible outside the gap, including the
case when the gap does not exist. An example of stable
evolution of such an asymmetric soliton is displayed in
Figure 8 for ω = 0 and λ = −0.8 (notice that this
stable antisymmetric soliton is found in the case when
the true gap does not exist at all, as |λ| > 2/3 in this
case).

– The type-III asymmetric soliton is stable as it is gener-
ated by the bifurcation from the symmetric soliton at
positive λ. On the other hand, the type-I asymmetric
solitons appear as unstable ones after the correspond-
ing bifurcation. Following the branches of the type-I
and type-III solitons towards negative values of λ, sta-
bility exchange between them was found. For example,
the type-III soliton is stable at ω = 0 and λ = 0.2, and
its type-I counterpart is unstable in the same case,
while for ω = 0 and λ = −0.2 the character of the

stability is exactly opposite. Figure 9 displays typi-
cal examples of stable type-I and type-III asymmetric
solitons.

– Type-II asymmetric solitons are always unstable.
Quasi-solitons (delocalized ones) of the same type are
always unstable too.

– Type-I delocalized solitons (quasi-solitons) existing
outside the gap are stable for relatively large negative
values of λ. In particular, the stability was observed,
at ω = 0, for λ taking values between −0.6 and −0.8.
As well as the stability of the truly localized antisym-
metric solitons found outside the gap, the stability of
the slightly delocalized asymmetric ones is a prediction
of significance to the experiment, as it opens a way to
look for stable patterns in a much larger parameter
region than it could be expected.

6.2 The eigenvalue analysis

In this paper, we present results of computation of the
stability eigenvalues only for the symmetric solitons, as in
other cases the problem is really difficult, and it should be
a subject for a separate work. It is relevant first to reca-
pitulate the way the eigenvalue analysis was performed for
the single-core model in reference [8]. To derive linearized
equations for small perturbations around the stationary
symmetric solitons, the perturbed solutions were taken in
the form

U = (uB (x;ω) + ε1 (x) exp (iαt)) exp (−iωt) ,
V = (vB (x;ω) + ε2 (x) exp (iαt)) exp (−iωt) ,
U∗ = (u∗B (x;ω) + ε3 (x) exp (iαt)) exp (iωt) ,

V ∗ = (v∗B (x;ω) + ε4 (x) exp (iαt)) exp (iωt) , (6.1)

where α is the eigenfrequency (stability eigenvalue),
and (u, v)B(x;ω) are taken as per the exact solution (1.2).
Then, eigenmodes of the small perturbations are solutions
to the following linear system,

[
i

(
σ3 0
0 −σ3

)
∂

∂x
+

(
σ1 0
0 σ1

)
+ ω

(
σ0 0
0 σ0

)

+Q (uB, vB)
]
ε = α

(
σ0 0
0 −σ0

)
ε, (6.2)

where ε is the column composed of ε1, ..., ε4, σn are the
Pauli matrices, and the matrix Q is

Q (uB, vB) ≡


|uB |2 + |vB |2 v∗
BuB (1/2)u2

B uBvB

u∗
BvB |uB |2 + |vB |2 uBvB (1/2)v2

B

(1/2)u∗2
B u∗

Bv∗
B |uB|2 + |vB |2 u∗

BvB

u∗
Bv∗

B (1/2)v∗2
B v∗

BuB |uB |2 + |vB |2


 .

(6.3)
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Fig. 9. Evolution of stable asymmetric solitons: (top) type I;
(bottom) type III. Three components of the solitons are shown
in one panel for the compactness. Small intrinsic oscillations
of the solitons observed in the figure are due to initial pertur-
bations.

Equation (6.2) can then be rewritten as

A (uB, vB, ω) ε = αJε, (6.4)

defining A and J appropriately.

Equation (6.4) sets the eigenvalue problem. In refer-
ence [8], it was shown that, in the single-core model, there
is a critical value ωcr of the frequency of the unperturbed
soliton, such that for ω > ωcr all the eigenvalues α are
real [i.e., there is no instability, see Eqs. (6.1)]. In fact,
ωcr found in reference [8] is very close to zero (virtually
the same critical value was found earlier in reference [7]
by means of the VA).

In the case of the symmetric solitons in the dual- or
tri-core system, we assume perturbations of the form

Un = (ûn (x;ω, λ) + εn
1 (x) exp (iαt)) exp (−iωt) ,

Vn = (v̂n (x;ω, λ) + εn
2 (x) exp (iαt)) exp (−iωt) ,

U∗
n = (û∗n (x;ω, λ) + εn

3 (x) exp (iαt)) exp (iωt) ,

V ∗
n = (v̂∗n (x;ω, λ) + εn

4 (x) exp (iαt)) exp (iωt) , (6.5)

where ûn (x;ω, λ) and v̂n (x;ω, λ) are the unperturbed
symmetric solitary-wave solutions, like the one given
by equation (4.1). Introducing the perturbation of
the form (6.5) into equation (2.4), defining εn =
[εn

1 , ε
n
2 , ε

n
3 , ε

n
4 ]T , and making use of the definitions (6.3)

and (6.4), we arrive at the new eigenvalue problem,


A (û1, v̂1, ω) ... λσ0

... ... ...
λσ0 ... A (ûM , v̂M , ω)





 ε1

:
εM


 =

α


 J ... 0
... ... ...
0 ... J





 ε1

:
εM


 , (6.6)

where σ0 is the unity matrix.
Since the system is conservative, the stability may only

be neutral, with all the eigenvalues being real. The ac-
tual objective is to solve the eigenvalue problem (6.6) for
M = 2 and 3, varying the values of λ and ω, in order to
identify a stability region in the plane (λ, ω) where all the
eigenvalues are purely real.

For the symmetric solitons, equations (6.6) can be rad-
ically simplified (while for asymmetric solitons they are
very involved, that is why the eigenvalue analysis is not
developed here for them). Indeed, by means of a linear
transformation, equations (6.6) for the symmetric soliton
are cast in the form


A(û, v̂, ω) + (M − 1)λσ0 0 . . . 0

0 A(û, v̂, ω) − λσ0 . . . 0

. . . . . . . . . . . .

0 0 . . . A(û, v̂, ω) − λσ0




×




∑
m εm

ε1 − ε2

.

.

ε1 − εM


 = α




J 0 . . . 0

0 J . . . 0

. . . . . . . . . . . .

0 0 . . . J







∑
m εm

ε1 − ε2

.

.

ε1 − εM


 , (6.7)

in which the system is effectively decoupled, consequently
the full set of the eigenvalues is the union of sets obtained
by solving each partial equation in (6.7) separately. The
decoupled equations can be further simplified, making use
of the property following from the definition (6.4),

A (û (x;ω, λ) , v̂ (x;ω, λ) , ω) + nλσ0 =

A (û (x;ω, λ) , v̂ (x;ω, λ) , ω + nλ) , (6.8)
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
 A(ûB(x;ω + (M − 1)λ), v̂B(x;ω + (M − 1)λ), ω + (M − 1)λ) 0

0 A(ûB(x;ω + (M − 1)λ), v̂B(x;ω + (M − 1)λ), ω − λ)


 ε̃ =

α


 J 0

0 J


 ε̃, (6.9)

where n is an arbitrary integer. Using equations (4.2) and
(6.8) we obtain

see equation (6 .9 ) above,

where ε̃ ≡
[∑

m
εm, ε1 − ε2

]T

.
Actually, the first decoupled equation implied in (6.9)

has already been solved in the context of the single-
core stability problem [6,8], which yields stable eigen-
values for ω + (M − 1)λ > ωcr, and unstable ones for
ω + (M − 1)λ < ωcr.

Thus, the symmetric solitons are definitely unstable in
the region ω < ωcr−(M−1)λ. The actual character of the
region ω > ωcr − (M − 1)λ, where the above result does
not produce instability, is determined by eigenvalues of the
second decoupled equation in (6.9). With the definitions

ω′ = ω + (M − 1)λ, β ≡ −Mλ, (6.10)

we arrive at a modified eigenvalue problem

A (uB (x;ω′) , vB (x;ω′) , ω′ + β) ε = αJε. (6.11)

Eigenvalues generated by equation (6.11) were found
numerically, using the above-mentioned sinc-collocation
technique, with the sinc basis augmented by the sine and
cosine functions, to account for nonvanishing periodic tails
of the eigenfunctions at x → ±∞ (an extensive descrip-
tion of the sinc techniques can be found in Ref. [29]). The
computation of the eigenvalues was performed on a dense
grid in the space (ω′, β). Points at which the symmet-
ric solitons were thus found to be completely stable are
marked in Figure 10 for both the dual-core and tri-core
systems, M = 2 and 3 (as it was mentioned above, in the
dual-core system antisymmetric solitons are tantamount
to their symmetric counterparts, with λ replaced by −λ,
therefore in Fig. 10 the stability regions for the symmet-
ric and antisymmetric solitons in the dual-core system are
mirror images of each other).

The diagonal lines with the negative slope show the
boundary of the existence of the symmetric solitons. A
conclusion clearly suggested by Figure 10 is that the
symmetric solitons are stable close to the upper bound-
ary of their existence region, which corresponds to small-
amplitude symmetric solitons. Another important infer-
ence is that (as it was already mentioned above) the
stability region of the symmetric solitons extends far be-
yond the borders of the spectral gap, and, moreover, stable
symmetric solitons are found in the case when the gap does

not exist (|λ| > 1 for M = 2, and |λ| > 2/3 for M = 3).
Thus, the symmetric solitons form a continuous family of
embedded solitons [25,26], which are stable in the linear
approximation, even in the case when regular gap solitons
do not exist at all.

Another relevant issue is to understand what will hap-
pen with the symmetric soliton when it is subject to the
instability. Our computations clearly demonstrate that, in
both the dual- and tri-core systems, the destabilization of
the symmetric solitons occurs, with the increase of the
soliton’s amplitude, through the emergence of a pair of
complex-conjugate eigenvalues, hence the instability is os-
cillatory. In accordance with that, direct simulations show
that, most typically, the growth of unstable perturbations
quickly saturates, and, as a result, the unstable static soli-
ton turns into a breather, which features persistent in-
trinsic vibrations. To illustrate this generic scenario, in
Figure 11 we display a typical example of the destabi-
lization of the symmetric soliton in the dual-core system.
The destabilization sets in at ω′ = 0.86 for β = −0.4 [i.e.,
λ = 0.2; the parameters are defined as per Eqs. (6.10)].
Direct simulations of the same system, displayed in Fig-
ure 12, confirm that the development of the instability
transforms the unstable symmetric soliton into a breather.
Nevertheless, in rarer cases (at some other values of the
parameters), the instability could completely destroy the
symmetric soliton.

This generic result (the transformation of unstable
symmetric solitons into stable breathers) is of obvious rel-
evance to the experiment, as it suggests a possibility to
observe the breathers in the dual- and tri-core nonlinear
gratings. The only necessary condition for the creation of
a breather is to start with an unstable soliton having a suf-
ficiently large amplitude, i.e., launching a pulse carrying
sufficiently large energy, which is not difficult [6].

Lastly, we dwell on antisymmetric solitons in the tri-
core system. In this case, the eigenvalue problem (6.6) can
be simplified too. Eventually, the full stability problem
splits into two decoupled ones. This time, they take the
form of[
A (0, 0, ω) λσ0

λσ0 A (ûB (x;ω − λ) , v̂B (x;ω − λ) , ω)

] [
ε1

ε2

]
=

α

[
J 0
0 J

][
ε1

ε2

]
, (6.12)

A (ûB (x;ω − λ) , v̂B (x;ω − λ) , ω − λ) ε = αJε . (6.13)
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Fig. 10. The stability region of symmetric
solitons: dots mark parameter sets (ω, λ) for
which it was checked that all the eigenval-
ues of small perturbations around the soli-
ton are stable: (a) the dual-core system (this
panel also includes the stability region for
the antisymmetric solitons); (b) the tri-core
system. The parallel lines with the negative
and positive slope are existence borders for
the symmetric and antisymmetric solitons, re-
spectively.

It follows from the separating equation (6.12) that the
antisymmetric soliton is definitely unstable in the region
ω < ωcr + λ. The stability in the remaining region, ω >
ωcr + λ, is determined by two coupled equations (6.11).
We do not present results of the full investigation of these
equations here, which is a technically hard problem. Recall
that direct simulations reported in the previous subsection
have demonstrated that the antisymmetric solitons in the
tri-core system may be stable outside the gap (or in the

case when the gap does not exist at all) at sufficiently
large negative λ.

7 Conclusion

In this work, we have introduced a model of three lin-
early coupled nonlinear cores equipped with Bragg grat-
ings (BGs), which form a triangle. The most promising
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Fig. 11. A generic example of the appear-
ance and evolution of an unstable eigen-
value in the spectrum of small perturba-
tions around the symmetric soliton (for
λ = 0.2) in the dual-core system. The
horizontal axis is the frequency ω′ of the
unperturbed soliton, redefined as per equa-
tion (6.10), and the absolute value of the
imaginary part of the eigenvalue, shown on
the vertical axis, is the growth rate of the
oscillatory instability. The onset and sub-
sequent development of the instability of
symmetric solitons in the tri-core system
are quite similar to those shown here and
in Figure 12.

Fig. 12. Transformation of an unstable
symmetric soliton into a breather by the
oscillatory instability in the dual-core sys-
tem, in the case of ω = 0.6, λ = 0.2. After a
transient period, the vibrations settle down
to a quasi-steady state.

way to create tri-core BG configurations (as well as dual-
core ones) is to use inverted gratings written on internal
surfaces of relatively broad holes in the photonic-crystal-
fiber setting. The investigation of solitons in this model
and their stability is an issue of interest in its own right,
and offers applications to the design of highly functional
photonic devices, as well as to the study of photonic crys-
tals combined with BGs. We have also revisited the earlier
studied dual-core system, obtaining new results for it.

Families of symmetric and antisymmetric solutions
were found analytically. They continuously extend across
borders of the spectral gap, in both the dual- and tri-core
systems; moreover, these families persist in the case when
the system’s linear spectrum has no gap at all, hence the
system cannot support ordinary gap solitons. Apart from
that, three different types of asymmetric solitons were
found by means of the variational approach and numer-
ical methods. Asymmetric solitons of all the types exist
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only inside the spectral gap, but slightly delocalized asym-
metric solitons with nonvanishing tails are found outside
the gap.

Stability of all the solitons was explored in direct sim-
ulation of the evolution equations. The stability of sym-
metric solitons was also studied in a more rigorous way,
by computation of stability eigenvalues for small pertur-
bations. The results show that the symmetric solitons are
stable up to bifurcation points, at which they give birth
to two types of asymmetric solitons. Beyond the bifurca-
tion, one type of the asymmetric solitons is initially stable,
while the other is not. Later, they swap their (in)stability.
The third type of the asymmetric solitons is always unsta-
ble. If the symmetric solitons are unstable, their instability
has oscillatory character. In most cases, it does not destroy
them, but rather transforms into robust breathers.

It has been found that the stability region of the sym-
metric solitons, in both the dual- and tri-core systems,
extends far beyond the spectral gap; moreover, a broad
stability region of the symmetric solitons is found in the
case (strong coupling between the cores) when there is
no gap in the linear spectrum of the systems. In addition,
the whole stability region of antisymmetric solitons, which
constitute a new type of solutions in the tri-core system,
is located outside the gap (and it also persists when the
gap is absent). These findings suggest that solitons in the
multi-core BGs can be observed experimentally in a much
broader frequency band than in their single-core counter-
part, and in a much wider parameter region than it could
be expected a priori. Stable asymmetric delocalized soli-
tons were also found outside the spectral gap, additionally
extending the variety of nonlinear states amenable to the
experimental observation in the multi-core BGs.

We appreciate useful discussions of issues concerning the soli-
ton stability with Andreas Mayer.

Appendix

The effective Lagrangian produced by the ansatz (5.3) is

∞∫
−∞

L(x)dx =
1
µ

(A4
1 +A4

2 +A4
3) +

3
35µ

(B4
1 +B4

2 +B4
3)

+
2
5µ

(A2
1B

2
1 +A2

2B
2
2 +A2

3B
2
3)− 2

µ
(1 − ω)(A2

1 +A2
2 +A2

3)

+
2
3µ

(1 + ω)(B2
1 +B2

2 +B2
3)− 4

3µ
(A1B1 +A2B2 +A3B3)

+
4λ
µ

(A1A2 +A2A3 +A1A3)+
4λ
3µ

(B1B2 +B2B3 +B1B3).

(A.1)

Varying this effective Lagrangian with respect to An, Bn,
and µ, we obtain a system of algebraic equations,

A3
1 + (ω − 1)A1 + λ(A2 +A3) − µ

3
B1 +

1
5
A1B

2
1 = 0

A3
2 + (ω − 1)A2 + λ(A1 +A3) − µ

3
B2 +

1
5
A2B

2
2 = 0

A3
3 + (ω − 1)A3 + λ(A2 +A1) − µ

3
B3 +

1
5
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2
3 = 0

3
35
B3

1 +
1
3
(ω + 1)B1 +

λ
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(B2 +B3) − µ
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2
1 = 0
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2 +
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2
2 = 0

3
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3 +
1
3
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2
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1
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1 +A4
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140
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+
1
10

(A2
1B

2
1 +A2

2B
2
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3) +

1
2
(ω − 1)(A2

1 +A2
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3)

+
1
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(1 + ω)(B2
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+
λ

3
(B1B2 +B2B3 +B1B3) = 0. (A.2)
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